Modular chemical mechanism predicts spatiotemporal dynamics of initiation in the complex network of hemostasis.

نویسندگان

  • Christian J Kastrup
  • Matthew K Runyon
  • Feng Shen
  • Rustem F Ismagilov
چکیده

This article demonstrates that a simple chemical model system, built by using a modular approach, may be used to predict the spatiotemporal dynamics of initiation of blood clotting in the complex network of hemostasis. Microfluidics was used to create in vitro environments that expose both the complex network and the model system to surfaces patterned with patches presenting clotting stimuli. Both systems displayed a threshold response, with clotting initiating only on isolated patches larger than a threshold size. The magnitude of the threshold patch size for both systems was described by the Damköhler number, measuring competition of reaction and diffusion. Reaction produces activators at the patch, and diffusion removes activators from the patch. The chemical model made additional predictions that were validated experimentally with human blood plasma. These experiments show that blood can be exposed to significant amounts of clot-inducing stimuli, such as tissue factor, without initiating clotting. Overall, these results demonstrate that such chemical model systems, implemented with microfluidics, may be used to predict spatiotemporal dynamics of complex biochemical networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of Blast Initiation of Detonation Using a Two Step Chemical Kinetics Model

The effect of chemical reactions on the blast initiation of detonation in gaseous media has been investigated in this paper. Analytical method is based on the numerical solution of onedimensional reactive Euler equations. So far, analyses on the blast initiation of detonation have modeled the combustion process as a one-step chemical reaction, which follows the Arrhenius rate law. Previous stud...

متن کامل

Using chemistry and microfluidics to understand the spatial dynamics of complex biological networks.

Understanding the spatial dynamics of biochemical networks is both fundamentally important for understanding life at the systems level and also has practical implications for medicine, engineering, biology, and chemistry. Studies at the level of individual reactions provide essential information about the function, interactions, and localization of individual molecular species and reactions in ...

متن کامل

Characterization of the threshold response of initiation of blood clotting to stimulus patch size.

This article demonstrates that the threshold response of initiation of blood clotting to the size of a patch of stimulus is a robust phenomenon under a wide range of conditions and follows a simple scaling relationship based on the Damköhler number. Human blood and plasma were exposed to surfaces patterned with patches presenting clotting stimuli using microfluidics. Perturbations of the comple...

متن کامل

CFD Simulation of Dry and Wet Pressure Drops and Flow Pattern in Catalytic Structured Packings

Type of packings and characteristics of their geometry can affect the flow behavior in the reactive distillation columns. KATAPAK SP is one the newest modular catalytic structured packings (MCSP) that has been used in the reactive distillation columns, recently. However, there is not any study on the hydrodynamics of this packing by using computational fluid dynamics. In the present work, a 3D ...

متن کامل

Frequency Domain Model Simplification of Cumulative Mass Fraction in CMSMPR Crystallizer

In this contribution, linearized dynamic model of Cumulative Mass Fraction (CMF) of Potassium Nitrate-Water Seeded Continues Mixed Suspension Mixed Product Removal (CMSMPR) crystallizer is approximated by a simplified model in frequency domain. Frequency domain model simplification is performed heuristically using the frequency response of the derived linearized models data. However, the CM...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 43  شماره 

صفحات  -

تاریخ انتشار 2006